

1-WIRE® DEVICES BATTERY MANAGEMENT Sep 08, 2003

App Note 2420: 1-Wire Communication with a Microchip
PICmicro Microcontroller

Several of Dallas Semiconductor's products contain a 1-Wire® communication interface and
are used in a variety of applications. These applications may include interfacing to one of the
popular PICmicros® (PICs) from Microchip. To facilitate easy interface between a 1-Wire
device and a PIC microcontroller, this application note presents general 1-Wire software
routines for the PIC microcontroller, explaining timing and associated details. This application
note also provides in an include file which covers all 1-Wire routines. Additionally, sample
assembly code is included which is specifically written to enable a PIC16F628 to read from a
DS2761 High-precision Li+ Battery Monitor.

Introduction
Microchip's PICmicro® microcontroller devices (PICs) have become a popular design choice for low-power and low-
cost system solutions. The microcontrollers have multiple general-purpose input/output (GPIO) pins, and can be easily
configured to implement Dallas Semiconductor's 1-Wire® protocol. The 1-Wire protocol allows interaction with many
Dallas Semiconductor parts including battery and thermal management, memory, iButtons®, and more. This
application note will present general 1-Wire routines for a PIC16F628 and explain the timing and associated details.
For added simplicity, a 4MHz clock is assumed for all material presented, and this frequency is available as an internal
clock on many PICs. Appendix A of this document contains an include file with all 1-Wire routines. Appendix B presents
a sample assembly code program designed for a PIC16F628 to read from a DS2761 High-Precision Li+ Battery
Monitor. This application note is limited in scope to regular speed 1-Wire communication.

General Macros
In order to transmit the 1-Wire protocol as a master, only two GPIO states are necessary: high impedance and logic
low. The following PIC assembly code snippets achieve these two states. The PIC16F628 has two GPIO ports, PORTA
and PORTB. Either of the ports could be setup for 1-Wire communication, but for this example, PORTB is used. Also,
the following code assumes that a constant DQ has been configured in the assembly code to indicate which bit in
PORTB will be the 1-Wire pin. Throughout the code, this bit number is simply called DQ. Externally, this pin must be
tied to a power supply via a pullup resistor.

 OW_HIZ:MACRO
 ;Force the DQ line into a high impedance state.
 BSF STATUS,RP0 ; Select Bank 1 of data memory
 BSF TRISB, DQ ; Make DQ pin High Z
 BCF STATUS,RP0 ; Select Bank 0 of data memory
 ENDM

 OW_LO:MACRO
 ;Force the DQ line to a logic low.
 BCF STATUS,RP0 ; Select Bank 0 of data memory
 BCF PORTB, DQ ; Clear the DQ bit
 BSF STATUS,RP0 ; Select Bank 1 of data memory
 BCF TRISB, DQ ; Make DQ pin an output
 BCF STATUS,RP0 ; Select Bank 0 of data memory
 ENDM

http://www.maxim-ic.com/appnotes10.cfm/ac_pk/1/ln/en
http://www.maxim-ic.com/appnotes10.cfm/ac_pk/5/ln/en

Both of these snippets of code are written as macros. By writing the code as a macro, it is automatically inserted into
the assembly source code by using a single macro call. This limits the number of times the code must be rewritten. The
first macro, OW_HIZ, forces the DQ line to a high impedance state. The first step is to choose the bank 1 of data
memory because the TRISB register is located in bank 1. Next, the DQ output driver is changed to a high impedance
state by setting the DQ bit in the TRISB register. The last line of code changes back to bank 0 of data memory. The last
line is not necessary, but is used so that all macros and function calls leave the data memory in a known state.

The second macro, OW_LO, forces the DQ line to a logic low. First, bank 0 of data memory is selected, so the PORTB
register can be accessed. The PORTB register is the data register, and contains the values that will be forced to the
TRISB pins if they are configured as outputs.

The DQ bit of PORTB is cleared so the line will be forced low. Finally, bank 1 of data memory is selected, and the DQ
bit of the TRISB register is cleared, making it an output driver. As always, the macro ends by selecting bank 0 of data
memory.

A final macro labeled WAIT is included to produce delays for the 1-Wire signaling. WAIT is used to produce delays in
multiples of 5µs. The macro is called with a value of TIME in microseconds, and the corresponding delay time is
generated. The macro simply calculates the number of times that a 5µs delay is needed, and then loops within
WAIT5U. The routine WAIT5U is shown in the next section. For each instruction within WAIT, the processing time is
given as a comment to help understand how the delay is achieved.

 WAIT:MACRO TIME
 ;Delay for TIME µs.
 ;Variable time must be in multiples of 5µs.
 MOVLW (TIME/5) - 1 ;1µs to process
 MOVWF TMP0 ;1µs to process
 CALL WAIT5U ;2µs to process
 ENDM

General 1-Wire Routines
The 1-Wire timing protocol has specific timing constraints that must be followed in order to achieve successful
communication. To aid in making specific timing delays, the routine WAIT5U is used to generate 5µs delays. This
routine is shown below.

 WAIT5U:
 ;This takes 5µs to complete
 NOP ;1µs to process
 NOP ;1µs to process
 DECFSZ TMP0,F ;1µs if not zero or 2µs if zero
 GOTO WAIT5U ;2µs to process
 RETLW 0 ;2µs to process

When used in combination with the WAIT macro, simple timing delays can be generated. For example, if a 40µs delay
is needed, WAIT 0.40 would be called. This causes the first 3 lines in WAIT to execute resulting in 4µ s. Next, the first 4
lines of code in WAIT5U executes in 5µs and loops 6 times for a total of 30µs. The last loop of WAIT5U takes 6µs and
then returns back to the WAIT macro. Thus, the total time to process would be 4 + 30 + 6 = 40µs.

Table 1. Regular speed 1-Wire interface timing

2.5V < VDD < 5.5V, TA = -20•‹C to 70•‹C.)

Parameter Symbol Min Typ Max Units

Time Slot tSLOT 60 120 µs

Recovery Time tREC 1 µs

Write 0 Low Time tLOW0 60 120 µs

Write 1 Low Time tLOW1 1 15 µs

Read Data Valid tRDV 15 µs

Reset Time High tRSTH 480 µs

Reset Time Low tRSTL 480 960 µs

Presence Detect High tPDH 15 60 µs

Presence Detect Low tPDL 60 240 µs

The start of any 1-Wire transaction begins with a reset pulse from the master device followed by a presence detect
pulse from the slave device. Figure 1 illustrates this transaction. This initialization sequence can easily be transmitted
via the PIC, and the assembly code is shown below Figure 1. The 1-Wire timing specifications for initialization, reading,
and writing are given above in Table 1. These parameters are referenced throughout the rest of the document.

Figure 1. 1-Wire initialization sequence.

 OW_RESET:
 OW_HIZ ; Start with the line high
 CLRF PDBYTE ; Clear the PD byte
 OW_LO
 WAIT .500 ; Drive Low for 500µs
 OW_HIZ
 WAIT .70 ; Release line and wait 70µs for PD
Pulse
 BTFSS PORTB,DQ ; Read for a PD Pulse
 INCF PDBYTE,F ; Set PDBYTE to 1 if get a PD Pulse
 WAIT .430 ; Wait 430µs after PD Pulse
 RETLW 0

The OW_RESET routine starts by ensuring the DQ pin is in a high impedance state so it can be pulled high by the
pullup resistor. Next, it clears the PDBYTE register so it is ready to validate the next presence detect pulse. After that,
the DQ pin is driven low for 500µs. This meets the tRSTL parameter shown in Table 1, and also provides a 20µs

additional buffer. After driving the pin low, the pin is released to a high impedance state and a delay of 70µs is added
before reading for the presence detect pulse. Using 70µs ensures that the PIC will sample at a valid time for any
combination of tPDL and tPDH. Once the presence detect pulse is read, the PDBYTE register is adjusted to show the

logic level read. The DQ pin is then left in a high-impedance state for an additional 430µs to ensure that the tRSTH time

has been met, and includes a 20µs additional buffer.

The next routine needed for 1-Wire communication is DSTXBYTE, which is used to transmit data to a 1-Wire slave
device. The PIC code for this routine is shown below Figure 2. This routine is called with the data to be sent in the W
register, and it is immediately moved to the IOBYTE register. Next, a COUNT register is initialized to 8 to count the
number of bits sent out the DQ line. Starting at the DSTXLP, the PIC starts sending out data. First the DQ pin is driven
low for 3µs regardless of what logic level is sent. This ensures the tLOW1 time is met. Next, the lsb of the IOBYTE is

shifted into the CARRY bit, and then tested for a one or a zero. If the CARRY is a one, the DQ bit of TRISB is set which
changes the pin to a high impedance state and the line is pulled high by the pullup resistor. If the CARRY is a zero, the
line is kept low. Next a delay of 60µs is added to allow for the minimum tLOW0 time. After the 60µs wait, the pin is

changed to a high impedance state, and then an additional 2µs are added for pullup resistor recovery. Finally, the
COUNT register is decremented. If the COUNT register is zero, all eight bits have been sent and the routine is done. If
the COUNT register is not zero, another bit is sent starting at DSTXLP. A visual interpretation of the write zero and
write one procedure is shown in Figure 2.

Figure 1. 1-Wire write time slots.

 DSTXBYTE: ; Byte to send starts in W
 MOVWF IOBYTE ; We send it from IOBYTE
 MOVLW .8
 MOVWF COUNT ; Set COUNT equal to 8 to count the bits
 DSTXLP:
 OW_LO
 NOP
 NOP
 NOP ; Drive the line low for 3us
 RRF IOBYTE,F
 BSF STATUS,RP0 ; Select Bank 1 of data memory
 BTFSC STATUS,C ; Check the LSB of IOBYTE for 1 or 0
 BSF TRISB,DQ ; HiZ the line if LSB is 1
 BCF STATUS,RP0 ; Select Bank 0 of data memory
 WAIT .60 ; Continue driving line for 60µs
 OW_HIZ ; Release the line for pullup
 NOP
 NOP ; Recovery time of 2µs
 DECFSZ COUNT,F ; Decrement the bit counter
 GOTO DSTXLP
 RETLW 0

The final routine for 1-Wire communication is DSRXBYTE, which allows the PIC to receive information from a slave
device. The code is shown below Figure 3. The COUNT register is initialized to 8 before any DQ activity begins and its
function is to count the number of bits received. The DSRXLP begins by driving the DQ pin low to signal to the slave
device that the PIC is ready to receive data. The line is driven low for 6µs, and then released by putting the DQ pin into
a high impedance state. Next, the PIC waits an additional 4µs before sampling the data line. There is 1 line of code in

OW_LO after the line is driven low, and 3 lines of code within OW_HIZ. Each line takes 1µs to process. Adding up all
the time results in 1 + 6 + 3 + 4 = 14µs which is just below the tRDV spec of 15µs. After the PORTB register is read,
the DQ bit is masked off, and then the register is added to 255 to force the CARRY bit to mirror the DQ bit. The CARRY
bit is then shifted into IOBYTE where the incoming byte is stored. Once the byte is stored a delay of 50µs is added to
ensure that tSLOT is met. The last check is to determine if the COUNT register is zero. If it is zero, 8 bits have been
read, and the routine is exited. Otherwise, the loop is repeated at DSRXLP. The read zero and read one transactions
are visually shown in Figure 3.

Figure 1. 1-Wire read time slots.

 DSRXBYTE: ; Byte read is stored in IOBYTE
 MOVLW .8
 MOVWF COUNT ; Set COUNT equal to 8 to count the bits
 DSRXLP:
 OW_LO
 NOP
 NOP
 NOP
 NOP
 NOP
 NOP ; Bring DQ low for 6µs
 OW_HIZ
 NOP
 NOP
 NOP
 NOP ; Change to HiZ and Wait 4µs
 MOVF PORTB,W ; Read DQ
 ANDLW 1<<DQ ; Mask off the DQ bit
 ADDLW .255 ; C = 1 if DQ = 1: C = 0 if DQ = 0
 RRF IOBYTE,F ; Shift C into IOBYTE
 WAIT .50 ; Wait 50µs to end of time slot
 DECFSZ COUNT,F ; Decrement the bit counter
 GOTO DSRXLP
 RETLW 0

Summary
Dallas Semiconductor's 1-Wire communication protocol can easily be implemented on Microchip's PICmicro line of
microcontrollers. In order to complete 1-Wire transactions, only two GPIO states are needed, and the multiple GPIOs
on a PIC are easily configured for this task. There are three basic routines necessary for 1-Wire communication:

Initialization, Read Byte, and Write Byte. These three routines have been presented and thoroughly detailed to provide
accurate 1-Wire regular speed communication. This allows a PIC to interface with any of the many Dallas
Semiconductor 1-Wire devices. Appendix A of this document has all three routines in a convenient include file.
Appendix B contains a small assembly program meant to interface a PIC16F628 to a DS2761 High Precision Li+
Battery Monitor.

Appendix A: 1-Wire Include File (1W_16F6X.INC)

; ***
;
; Dallas 1-Wire Support for PIC16F628
;
; Processor has 4MHz clock and 1µs per instruction cycle.
;
; ***

; ***
; Dallas Semiconductor 1-Wire MACROS
; ***
OW_HIZ:MACRO
 BSF STATUS,RP0 ; Select Bank 1 of data memory
 BSF TRISB, DQ ; Make DQ pin High Z
 BCF STATUS,RP0 ; Select Bank 0 of data memory
 ENDM
; --
OW_LO:MACRO
 BCF STATUS,RP0 ; Select Bank 0 of data memory
 BCF PORTB, DQ ; Clear the DQ bit
 BSF STATUS,RP0 ; Select Bank 1 of data memory
 BCF TRISB, DQ ; Make DQ pin an output
 BCF STATUS,RP0 ; Select Bank 0 of data memory
 ENDM
; --
WAIT:MACRO TIME
;Delay for TIME µs.
;Variable time must be in multiples of 5µs.
 MOVLW (TIME/5)-1 ;1µs
 MOVWF TMP0 ;1µs
 CALL WAIT5U ;2µs
 ENDM

; ***
; Dallas Semiconductor 1-Wire ROUTINES
; ***
WAIT5U:
;This takes 5uS to complete
 NOP ;1µs
 NOP ;1µs
 DECFSZ TMP0,F ;1µs or 2µs
 GOTO WAIT5U ;2µs
 RETLW 0 ;2µs
; --
OW_RESET:
 OW_HIZ ; Start with the line high

 CLRF PDBYTE ; Clear the PD byte
 OW_LO
 WAIT .500 ; Drive Low for 500µs
 OW_HIZ
 WAIT .70 ; Release line and wait 70µs for PD
Pulse
 BTFSS PORTB,DQ ; Read for a PD Pulse
 INCF PDBYTE,F ; Set PDBYTE to 1 if get a PD Pulse
 WAIT .400 ; Wait 400µs after PD Pulse
 RETLW 0
; --
DSRXBYTE: ; Byte read is stored in IOBYTE
 MOVLW .8
 MOVWF COUNT ; Set COUNT equal to 8 to count the bits
DSRXLP:
 OW_LO
 NOP
 NOP
 NOP
 NOP
 NOP
 NOP ; Bring DQ low for 6µs
 OW_HIZ
 NOP
 NOP
 NOP
 NOP ; Change to HiZ and Wait 4µs
 MOVF PORTB,W ; Read DQ
 ANDLW 1<<DQ ; Mask off the DQ bit
 ADDLW .255 ; C=1 if DQ=1: C=0 if DQ=0
 RRF IOBYTE,F ; Shift C into IOBYTE
 WAIT .50 ; Wait 50µs to end of time slot
 DECFSZ COUNT,F ; Decrement the bit counter
 GOTO DSRXLP
 RETLW 0
; --
DSTXBYTE: ; Byte to send starts in W
 MOVWF IOBYTE ; We send it from IOBYTE
 MOVLW .8
 MOVWF COUNT ; Set COUNT equal to 8 to count the bits
DSTXLP:
 OW_LO
 NOP
 NOP
 NOP ; Drive the line low for 3us
 RRF IOBYTE,F
 BSF STATUS,RP0 ; Select Bank 1 of data memory
 BTFSC STATUS,C ; Check the LSB of IOBYTE for 1 or 0
 BSF TRISB,DQ ; HiZ the line if LSB is 1
 BCF STATUS,RP0 ; Select Bank 0 of data memory
 WAIT .60 ; Continue driving line for 60µs
 OW_HIZ ; Release the line for pullup
 NOP
 NOP ; Recovery time of 2µs
 DECFSZ COUNT,F ; Decrement the bit counter
 GOTO DSTXLP

 RETLW 0
; --

Appendix B: PIC16F628 to DS2761 Assembly Code (PIC_2_1W.ASM)

; ***
;
; Dallas Semiconductor PIC code
;
; This code will interface a PIC16F628 microcontroller to
; a DS2761 High-Precision Li+ Battery Monitor
;
; ***;
;
; VCC
; ^
; |
; |
; /
; \ Rpup
; /
; \
; |
; 16F628 | DS2761
; RB1 (pin 7) ------------------------------ DQ (pin 7)
;
; ***;

;---
; List your processor here.

 list p=16F628

; Include the processor header file here.

 #include <p16F628.inc>
;---
; Assign the PORTB with Constants

 constant DQ=1 ; Use RB1 (pin7) for 1-Wire
;--
; These constants are standard 1-Wire ROM commands

 constant SRCHROM=0xF0
 constant RDROM=0x33
 constant MTCHROM=0x55
 constant SKPROM=0xCC
;---
; These constants are used throughout the code

 cblock 0x20
 IOBYTE
 TMP0 ; Address 0x23
 COUNT ; Keep track of bits
 PICMSB ; Store the MSB

 PICLSB ; Store the LSB
 PDBYTE ; Presence Detect Pulse
 endc
;---
; Setup your configuration word by using __config.

; For the 16F628, the bits are:
; CP1,CP0,CP1,CP0,N/A, CPD, LVP, BODEN, MCLRE, FOSC2, PWRTE, WDTE, FOSC1, FOSC0
; CP1 and CP0 are the Code Protection bits
; CPD: is the Data Code Protection Bit
; LVP is the Low Voltage Programming Enable bit
; PWRTE is the power-up Timer enable bit
; WDTE is the Watchdog timer enable bit
; FOSC2, FOSC1 and FOSC0 are the oscillator selection bits.

; CP disabled, LVP disabled, BOD disabled, MCLR enabled, PWRT disabled, WDT disabled,
INTRC I/O oscillator
; 11111100111000

 __config 0x3F38
;---
; Set the program origin for subsequent code.

 org 0x00
 GOTO SETUP
 NOP
 NOP
 NOP
 GOTO INTERRUPT ; PC 0x04...INTERRUPT VECTOR!
;---
INTERRUPT:
 SLEEP
;---
; Option Register bits
; ____
; RBPU,INTEDG,TOCS,TOSE,PSA,PS2,PS1,PS0
; 7=PORTB Pullup Enable, 6=Interrupt Edge Select, 5=TMR0 Source,
; 4=TMR0 Source Edge, 3=Prescaler Assign, 2-0=Prescaler Rate Select

; 11010111
; PORTB pullups disabled,rising edge,internal,hightolow,TMR0,1:256

SETUP:
 BCF STATUS,RP1
 BSF STATUS,RP0 ; Select Bank 1 of data memory
 MOVLW 0xD7
 MOVWF OPTION_REG
 BCF STATUS,RP0 ; Select Bank 0 of data memory
;---

 BCF INTCON,7 ; Disable all interrupts.

;---
 GOTO START
;---
; Include the 1-Wire communication routines and macros

 #INCLUDE 1w_16f6x.inc
;---
START:
;---
GET_TEMP:
 CALL OW_RESET ; Send Reset Pulse and read for Presence
Detect Pulse
 BTFSS PDBYTE,0 ; 1 = Presence Detect Detected
 GOTO NOPDPULSE
 MOVLW SKPROM
 CALL DSTXBYTE ; Send Skip ROM Command (0xCC)
 MOVLW 0x69
 CALL DSTXBYTE ; Send Read Data Command (0x69)
 MOVLW 0x0E
 CALL DSTXBYTE ; Send the DS2761 Current Register MSB
address (0x0E)
 CALL DSRXBYTE ; Read the DS2761 Current Register MSB
 MOVF IOBYTE,W
 MOVWF PICMSB ; Put the Current MSB into file PICMSB
 CALL DSRXBYTE ; Read the DS2761 Current Register LSB
 MOVF IOBYTE,W
 MOVWF PICLSB ; Put the Current LSB into file PICLSB
 CALL OW_RESET

NOPDPULSE: ; Add some error processing here!
 SLEEP ; Put PIC to sleep
;---
 end

PICmicro is a registered trademark of Microchip Technology Inc.
1-Wire is a registered trademark of Dallas Semiconductor.

More Information

DS1822: QuickView -- Full (PDF) Data Sheet -- Free Samples

DS18B20: QuickView -- Full (PDF) Data Sheet -- Free Samples

DS18S20: QuickView -- Full (PDF) Data Sheet -- Free Samples

DS2431: QuickView -- Full (PDF) Data Sheet -- Free Samples

DS2720: QuickView -- Full (PDF) Data Sheet -- Free Samples

DS2740: QuickView -- Full (PDF) Data Sheet -- Free Samples

DS2751: QuickView -- Full (PDF) Data Sheet -- Free Samples

DS2760: QuickView -- Full (PDF) Data Sheet

DS2761: QuickView -- Full (PDF) Data Sheet -- Free Samples

DS2762: QuickView -- Full (PDF) Data Sheet -- Free Samples

DS2770: QuickView -- Full (PDF) Data Sheet -- Free Samples

http://www.maxim-ic.com/quick_view2.cfm/qv_pk/2795/ln/en
http://pdfserv.maxim-ic.com/en/ds/DS1822.pdf
http://www.maxim-ic.com/samples/index.cfm?Action=Add&PartNo=DS1822&ln=en
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/2812/ln/en
http://pdfserv.maxim-ic.com/en/ds/DS18B20.pdf
http://www.maxim-ic.com/samples/index.cfm?Action=Add&PartNo=DS18B20&ln=en
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/2815/ln/en
http://pdfserv.maxim-ic.com/en/ds/DS18S20.pdf
http://www.maxim-ic.com/samples/index.cfm?Action=Add&PartNo=DS18S20&ln=en
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/4272/ln/en
http://pdfserv.maxim-ic.com/en/ds/DS2431.pdf
http://www.maxim-ic.com/samples/index.cfm?Action=Add&PartNo=DS2431&ln=en
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/3471/ln/en
http://pdfserv.maxim-ic.com/en/ds/DS2720.pdf
http://www.maxim-ic.com/samples/index.cfm?Action=Add&PartNo=DS2720&ln=en
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/3801/ln/en
http://pdfserv.maxim-ic.com/en/ds/DS2740.pdf
http://www.maxim-ic.com/samples/index.cfm?Action=Add&PartNo=DS2740&ln=en
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/3823/ln/en
http://pdfserv.maxim-ic.com/en/ds/DS2751.pdf
http://www.maxim-ic.com/samples/index.cfm?Action=Add&PartNo=DS2751&ln=en
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/2931/ln/en
http://pdfserv.maxim-ic.com/en/ds/DS2760.pdf
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/3468/ln/en
http://pdfserv.maxim-ic.com/en/ds/DS2761.pdf
http://www.maxim-ic.com/samples/index.cfm?Action=Add&PartNo=DS2761&ln=en
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/3950/ln/en
http://pdfserv.maxim-ic.com/en/ds/DS2762.pdf
http://www.maxim-ic.com/samples/index.cfm?Action=Add&PartNo=DS2762&ln=en
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/3281/ln/en
http://pdfserv.maxim-ic.com/en/ds/DS2770.pdf
http://www.maxim-ic.com/samples/index.cfm?Action=Add&PartNo=DS2770&ln=en

